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EXECUTIVE SUMMARY 

In this project, the investigators first reviewed the literature on pedestrian behaviors and 

various technologies to collect pedestrian data. It was concluded that the studies on 

pedestrian behaviors, especially at signalized intersections, have been rather limited in 

the past 20 years. Therefore, this research effort is needed to provide  up-to-date 

information on this topic.  

The research team then developed a pedestrian behavior data collecting system based 

on the LiDAR sensing technologies and then deployed at two intersections. After a few 

months of stabilization, the developed software could reliably collect pedestrian 

behaviors. The developed solution collected thousands of pedestrian behavioral samples 

at each intersection over many months. The data analysis shows that the ADA-compliant 

(audible) pedestrian push buttons can significantly reduce pedestrians’ “Effective 

Perception-Reaction (E-P-R)” time, defined as pedestrians’ perception-reaction time to 

the onset of WALK plus the walking time from the waiting area into the intersection.   

The research team also explored a novel dynamic flashing yellow arrow mechanism (D-

FYA) to solve the conflict between the permissive left-turn vehicles and concurrent 

crossing pedestrians. Based on pedestrians’ presence and trajectories, the flashing 

yellow arrow will either start on time, be postponed, or cancelled with each cycle. The 

proposed D-FYA can improve pedestrian safety while maximizing the permissive left-turn 

capacity. The results in traffic signal simulation were promising.  

The findings of this study can improve pedestrian safety at signalized intersections. 
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1.0 INTRODUCTION 

The objectives of this research are to develop a pedestrian behavior analytics framework, 

and to prove the concept of a novel dynamic flashing yellow arrow (D-FYA) mechanism 

with LiDAR sensor at signalized intersections. The LiDAR sensors have been used in 

automated vehicles to identify surrounding vehicles and pedestrians. They used to be 

prohibitively expensive, but the price has dramatically reduced to a comparable range 

with the widely adopted video or radar detectors. The LiDAR sensors outperform video or 

radar sensors in many aspects such as slow object tracking and being able to work in 

adverse weather conditions. Meanwhile, current traffic research and detection 

technologies are primarily for vehicular traffic even though pedestrian safety has been a 

top issue for decades. Traffic signal control operations are heavily biased toward 

vehicular traffic as well. The pedestrian fatalities, surprisingly, have reached the highest 

in the past 40 years (over 7,000 pedestrian deaths in 2022). As such, it is critical to 

conduct a pedestrian behavior study now to provide the latest planning and operation 

guidelines for pedestrian facilities, especially at intersections. The findings from this 

research can also be applicable during pandemics and other natural disasters, where 

nonmotorized travel becomes more popular, and cities must adapt to quickly prioritize the 

active transportation modes. 

 

Prior to the availability of LiDAR tracking sensors, many obstacles existed to prevent 

extensive investigations into a pedestrian-focused multimodal traffic control system. A 

major obstacle is the lack of reliable pedestrian detection devices. Although multiple 

techniques like video analytics have been examined, they turn out either to be not reliable 

in all conditions or unsuitable for large-scale applications. The lack of reliable, cost-

effective sensing techniques also results in the slow development of a multimodal traffic 

control system. While the techniques for vehicular traffic are fast evolving, less 

improvement has been made to favor pedestrians.    
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The rest of the report is laid out as follows. The literature review is next, followed by the 

development of a dynamic flashing yellow arrow strategy for left-turning vehicles and 

pedestrian behavior study. 
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2.0 LITERATURE REVIEW 

Pedestrian safety is a critical prerequisite to promoting walkability in cities. Pedestrians 

are vulnerable road users, suffering the greatest risk of personal harm while posing the 

least amount of risk to others. In the 21st century, transportation developments in the 

United States were largely focused towards making the driver’s experience as expedient 

and frictionless as possible, while providing little protections or technological 

advancements for the needs of pedestrians (Gutfreund, 2004; Levinson and Krizek, 

2008). Guides for traffic controls at intersections have been developed for stewarding 

safety since the 1930s (American Association of State Highway Officials and National 

Conference on Street and Highway Safety, 1935; Schad, 1935), but the occurrence of 

pedestrian fatalities occurring at intersections has remained relatively flat for the past two 

decades, with no strong upward or downward trends (Figure 1). Even more pressing is 

the fact that although traffic fatalities have generally been trending downwards, pedestrian 

deaths are representing an increasing portion of overall traffic fatalities (NHTSA, 2018). 

 

 

Figure 2.1: The last 20 years of pedestrians killed at intersections, annually, in the 

United States. 

Some practitioners are promoting a “safe-systems approach” that embraces the need to 

design for naturally fallible, tired, distracted human road users as a foundational design 
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constraint (Grembek, 2019). Pedestrian deaths will decline when the man-made 

transportation system is redeveloped to suit the breadth of human behavior – for 

erroneous drivers and erroneous pedestrians. Past attempts to regulate a perpetual state 

of perfect travel behavior have fallen short. The motivation for this study is part of the 

broader shift from trying to control individual behavior to creating transportation systems 

that are not dangerous. Since the 1960s, inductive loop sensors have detected and  

facilitated motor vehicles (Klein et al., 2006), but pedestrian detection has been 

challenging due to variability in pedestrian walk/roll patterns and grouping arrangements, 

as well as the limits of sensor capability in wide environmental conditions including 

brightness and darkness; high and low temperatures; and rain, ice, and snow. 

2.1 DEVELOPING SIGNAL TIMING TO SERVE PEDESTRIANS AT 

INTERSECTIONS 

When the Manual of Uniform Traffic Control Devices (MUTCD) was first published in 

1935, the United States had more fixed-time signals than traffic-actuated signals, but the 

authors hoped the efficiencies provided by traffic-actuated signals would better minimize 

delay and thus encourage more compliant behavior from drivers and pedestrians. 

Moreover, specific guidelines for signal timing had not yet been formalized, so the 

MUTCD offered heuristics for vehicular considerations and less-developed caveats 

regarding pedestrians. For example, for fixed-time signals, the timing of the yellow 

indication was tailored to vehicle clearance times and specified to be at least three 

seconds, unless the speeds were 35 mph or greater, in which they would be given at least 

five seconds (pg. 90). In contrast, pedestrian signals lacked a clearance phase indication 

(analogous to today’s FLASHING DON’T WALK), and timed signals were considered to 

accommodate pedestrian clearance through a minimum green indication of at least 10 

seconds, or a duration “sufficient to permit pedestrians to cross a point of safety (pg. 89).” 

Guidance was even less defined for traffic-actuated signals: “It is important…to consider 

the possibility of providing satisfactory pedestrian clearance periods under traffic-
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actuated control (pg. 67).” As traffic volumes grew, the pedestrian-actuated push button 

was also recommended to create a break in traffic-actuated vehicle flow. 

By the 1961 edition of the MUTCD, signal timing practices had developed and the MUTCD 

offered a standard for which to calculate pedestrian clearances: 4.0 feet per second was 

assumed to be the “normal walking pace (pg. 222),” with no empirical evidence cited. This 

pace and the width of the road would inform pedestrian signal timing. For roads with a 

median at least 4 feet wide, pedestrian clearances needed only be long enough to allow 

a pedestrian to reach the median. The implication is that it was deemed acceptable to 

require a pedestrian to take two cycles to cross the street.  

However, the 1961 edition did standardize several signal-timing improvements for 

pedestrians: the addition of a FLASHING DON’T WALK signal to indicate when it was no 

longer appropriate to enter the crosswalk (pg. 221), and for pre-timed signals, the 

pedestrian clearance interval had to govern the minimum phase length. Additionally, the 

leading pedestrian phase was presented to create temporal distance between 

pedestrians and turning vehicles (pg. 222). 

2.2 ACCOMODATING VARIABILITY IN PEDESTRIAN BEHAVIOR 

The next big step for improving signals for pedestrians was passage of the Americans 

with Disabilities Act (1990), which established mobility in the public right of way as a civic 

right with legally enforceable requirements. It also paved the way for a broader “all ages 

and abilities” traffic design movement. Crash data clearly showed that adults ages 65-75 

were disproportionately killed in crashes at intersections (Institute of Transportation 

Engineers, 2004). Researchers questioned the MUTCD’s 4.0 feet/second assumed 

pedestrian pace used in calculating signal timing. Closer studies of those with mobility 

impairments showed that average walk paces varied quite considerably, from 2.1 ft/sec 

for walker users to 3.5 ft/sec for wheelchair users (Institute of Transportation Engineers, 

1998).  
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2.2.1 Walk speeds for varying demographic groups and contexts 

In the 2009 edition of the MUTCD, the recommended assumption for pedestrian travel 

was reduced to 3.5 ft/sec, which corresponds to the 15 th percentile of expected walking 

speeds. These national guidelines have been further examined by different organizations 

and studies, with varying conclusions: 

• In areas with high levels of seniors or people with mobility impairments, ITE has 

recommended the assumption of a walk speed of 2.5 ft/sec (Institute of 

Transportation Engineers, 2004). 

• Other studies have or have supported the recommended 3.5 ft/sec (Hou et al., 

2012). 

• And other state-specific studies have found that the 15th percentile walk speed was 

slightly above 4.0 ft/sec (Schultz et al., 2019). 

• Gender is also a strong predictor of walk speed, with female pedestrians 

demonstrating a slower walk time than males (Marisamynathan and Perumal, 

2014). 

These studies all posit a fixed pace to accommodate pedestrian needs. The drawbacks 

concomitant with assuming slower pedestrian walk rates are increases in the delay of 

stopped vehicles. Growing challenges of delay and congestion in growing cities produce 

serious economic and societal costs, but current intersection infrastructure (e.g., push 

button activation) does not have the capacity to accommodate varying walk speeds. 

2.2.2 Pedestrian perception reaction time 

Although careful deliberation has been given to the design walk to the 85th percentile walk 

speed, the mean perception reaction time has been used for pedestrian signal timing. 

The mean time required for pedestrian perception-reaction is 1.0 seconds, but the 85th 

percentile perception-reaction time is about 1.33 seconds (McGee et al., 2012). Although 

the final effects on signal timing decisions are small, using the mean perception reaction 

time does not factor in for the realities of individuals who are slower to respond to a WALK 
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signal, whether the slower reactions are attributable to cognitive impairments or 

distraction. 

 

 

2.2.3 Push button activation – to minimize delay for pedestrians and 

tradeoffs 

Since the 1930s, pedestrian actuation has been realized through the conscious intention 

of pedestrians pressing a push button. The fundamental design had not changed 

significantly until the development of accessible pedestrian signals (APS). In the 

accordance with the ADA, APS communicates to those with visual impairments through 

use of beaconing tones, auditory messaging, and tactile feedback (Barlow et al., 2003). 

Some offered an extended walk interval if the pedestrian pushed and held the button for 

three seconds. Studies found that 99% of pedestrians did not hold the button for three 

seconds, and 95% of pedestrians held the button for less than one second; the average 

hold time was 0.2 seconds (Noyce and Bentzen, 2005). Moreover, the buttons are 

designed to require five pounds of force and holding such force may be difficult for the 

very audience that would need the walk time extension (Barlow et al., 2003).  

2.2.4 Automated pedestrian detection to supplement/replace push 

button activation 

Rather than requiring the visually/mobility impaired to take another step for their safe 

crossing, the city of Adelaide, Australia, has required the installation of passive pedestrian 

detection for the purpose of extending crossing time for all new APS installations (Barlow 

et al., 2003). This example underscores the essential shift needed to apply developing a 

systems-safety approach to transportation networks: safety developments should be built 

into the system’s operation, and not require anything more than on the part of compliant 

pedestrian behavior.  

The United States has performed automated pedestrian detection trials at two 

intersections in Rochester, NY, and one intersection each in Phoenix, AZ, and Los 

Angeles, CA. They were installed to run in tandem with existing push button activation 
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systems, such that if a pedestrian did not push the button the automated sensor would 

provide the pedestrian-oriented activation. These trials found that pedestrians were less 

likely to begin crossing during DON’T WALK signals (χ2= 6.019, df = 1, p = 0.014) when 

accommodated by passive detection (Hughes et al., 2001). 

2.2.5 Dynamic signal timing to permit WALK phase extensions 

This systems-safety approach was also echoed in an innovative signal design launched 

in 2006 in the UK called Pedestrian User-Friendly Intelligent (PUFFIN) crossings. PUFFIN 

crossings have the ability – through passive pedestrian detection – to extend the amount 

of time needed to cross the intersection, such that if a pedestrian is going slower than the 

assumed pedestrian pace, they will still be served by the signal with an extended WALK 

phase (Fisher et al., 2010). This could allow a slow-moving senior to receive a time-

allowance closer to 2.5 ft/sec without requiring 2.5 ft/sec to be the default basis for signal 

timing. However, the PUFFIN accommodation capabilities are only as effective as the 

pedestrian detection system they rely on. PUFFIN signals were limited by errors in the 

available sensor technology, and further research has investigated 

supplementing/enhancing the detection zones to optimize the tradeoffs between vehicle 

delay and pedestrian accommodations (Hassan et al., 2017).  

When traffic signals can detect pedestrians as readily as they detect automobiles, a more 

equitable signal design can be implemented. Fortunately, sensor technology has 

continued to develop in recent years and the needs of autonomous vehicles has pushed 

for highly accurate sensing capabilities, which may also prove to further technology that 

is suitable for infrastructure-based applications such as real-time signal timing 

adjustments. The following section will outline the differences in sensor technologies.  

2.3 DESIRED DATA CHARACTERISTICS OF PEDESTRIAN SENSORS 

Dynamic signal timing requires a high degree of functionality from a sensor. The detection 

process must be permanent (not short term); real time (not requiring post-processing); 

count sensitive (not just detecting presence); directly detected (not estimated through a 

model); and suitable for use at intersections (not just a path segment). Although a signal 
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could operate without storing count data, a countermeasure’s safety benefits must be 

quantified through pedestrian count data (Zegeer et al., 2020). The transportation practice 

has long desired more complete data of pedestrian activity to meet both of these goals 

(Figure 2) at signalized intersections. Section 2.4 presents  sensing technologies beyond 

our data interests, but is intended to lend context for understanding the interest in LiDAR 

for traffic signal operations  

 

Figure 2.2 Sensor capabilities of interest. 

2.4 SENSING MECHANISMS OF DIFFERENT LIGHT WAVES 

Sensors vary in the medium by which objects are detected, but several pedestrian 

sensors rely on electromagnetic waves designed to detect a specific wavelength 

pertaining to visible light, infrared, microwaves, or radio waves. Electromagnetic sensors 

can be passive or active. A passive sensor can be compared to the human eyeball: there 

is a lens to allow light waves to enter and strike a sensing surface that only responds to 

a specific range of wavelengths. (Correspondingly, the general term “optical cameras” 

refers to machines that sense the wavelengths of the visible light spectrum.) The passive 

descriptor refers to the fact that the sensor does not produce the light it senses, it only 
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has a lens that intercepts ambient waves reflecting in the environment. It does not 

consume energy to receive the light, only to process it. 

 

Active sensors consume energy to transmit light energy outwards such that some 

bounces back from the surrounding environment, hits a receiving sensor, and is 

processed as data. Ranging is the general term used to describe the active sensor 

mechanism of relating the time between wavelength transmission and reception to a 

distance between the sensor and its target. 

 

The following descriptions cover various electromagnetic sensors that have been 

leveraged in pedestrian detection at paved facilities. (Sensors that do not use 

electromagnetic sensors, such as pressure mats and seismic sensors, are generally 

limited to trail use (Federal Highway Administration, 2016) and are outside the focus of 

this project.) Sensor types are presented ordered by the energy intensity of the 

electromagnetic waves used as their sensing medium. Ultrasonic sensors are not 

included as they have not attracted much development for future use in smart 

infrastructure, but extant models operate with many similar active ranging mechanisms, 

transmitting sound waves instead of electromagnetic waves.  

 

2.4.1 Radar/microwave 

Radio detection and ranging (radar) is an active sensor originally explored for military use 

in the WW II era to detect aircrafts or ships. Since declassification, radar has been 

leveraged for several civilian uses, especially since radio waves have a wide span of 

usable wavelengths from 100 meters to 4 millimeters. The longer the wavelength the 

more material it can pass through, with wavelengths of about 1 meter being used to 

penetrate the ground for geological surveying. However, longer wavelengths produce 

lower resolution sensor data (Williams, 2017). For example, radar speed guns used for 

traffic enforcement can measure vehicle speed using radio wavelengths of about 1 cm. 

Shorter radio waves are used for higher-resolution applications, such as AV radar sensors 

emitting waves of about 3-4 mm. 
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Although an introductory explanation of the electromagnetic spectrum typically positions 

radio waves as longer wavelength/lower energy than microwaves, the distinctions 

between radio and microwaves vary by industry, with radio waves being the broader 

category, and some regarding microwaves as a higher-energy type of radio wave. For 

this reason, pedestrian sensors transmitting 13 or 24 GHz frequencies are sometimes 

called radar and sometimes called microwave sensors. 

 

Radar has been used in advanced driver assistance system (ADAS) features, and were 

used in some the aforementioned PUFFIN crossings to detect pedestrians moving the 

crosswalk (Manston, 2011). When necessary, a dual antenna system can provide a 

curbside detection zone and a crosswalk detection zone. Limitations of radar include 

susceptibility to error from rainfall, though a 13 GHz radar has improved upon this 

limitation from earlier 24 GHz models. Radar can be used to detect pedestrians up to 30 

meters away, though sensors for commercial application generally specify a range of 18 

meters. 

 

A Doppler radar system can only detect moving objects, but not a pedestrian standing 

still. Due to the motion necessary for Doppler radar, more radar-based pedestrian sensors 

have been developed for use on automobiles (Heuel and Rohling, 2012; Hyun et al., 2016; 

Institute of Electrical and Electronics Engineers and IEEE Aerospace and Electronic 

Systems Society, 2010). 

 

2.4.2 Thermal cameras/passive infrared 

Thermal cameras and passive infrared (PIR) sensors both use passive detection of 

infrared light, which sense a shorter wavelength of 8-14 micrometers. Infrared light is 

radiated from everything according to its heat energy, also known as a heat signature. 

The higher energy of infrared light (compared to microwaves) enables further high-

resolution imaging. 
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Both PIR sensors and thermal cameras rely on a temperature sensitive resistor, such that 

when infrared light passes through the lens and strikes the sensor, its electrical resistance 

changes. The changes in resistance are measured and translated into temperature 

readings. Passive infrared sensors are typically installed such that when pedestrians pass 

through a detection zone, their heat signature is counted (Yang et al., 2011). A basic 

example are the automated doors at public buildings, which use infrared sensing to detect 

when to open. Early models of pedestrian PIR sensors had narrow detection zones, and 

thus were sensitive to occlusions – when one pedestrian is eclipsed by another pedestrian 

walking closer to the infrared bean. This is more likely to occur in crowded conditions, but 

improvements in data processing have allowed even slightly staggered pedestrians to be 

distinguished. PIR sensors can also suffer missed detections when the detection zone is 

narrow. Methods of correcting systematic undercounting have been included in detection 

literature (Yang et al., 2011). In mixed-traffic areas, bicyclists and pedestrians cannot be 

distinguished unless an induction loop is installed in the bicyclist’s expected path and the 

pedestrian count extracted from the overall count (Kothuri et al., 2017). 

 

A thermal camera operates with the same detection mechanism, except a matrix of 

several small sensors all take heat signature readings and ascribe them to a color to 

create an image. Most thermal cameras have 160x120 IR-sensitive sensors to create 

160x120 pixel images and can take such recordings at nine frames per second. Image 

recognition technology can then be applied to classify objects such as pedestrians, 

bicyclists, and vehicles (Larson, 2020). 

 

2.4.3 Active infrared 

Active infrared sensors emit a beam of infrared light to a receiver located across a 

pedestrian path. When a pedestrian passes through the path, the beam is blocked and a 

pedestrian count is recorded. Active infrared counters cannot distinguish between 

pedestrians and bicyclists, and generally have a narrow detection range. Therefore, they 

are generally used for pedestrian-only trails, where the pedestrian path is constrained 

and classification is not necessary (Kothuri et al., 2017; Ozbay et al., 2010). 
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Active infrared sensors are a good low-cost technology to increase ped counts on trails, 

but are not being explored for use at intersections or in high-traffic areas. 

 

2.4.4 LiDAR 

Light detection and ranging (LiDAR) sensors are active sensors, with applications for 

industries as diverse as forestry, surveying, altimetry and varying scales of detection and 

image resolution. For transportation purposes, LiDAR has used been used for supporting 

automated driver assistance systems (ADAS) such as detecting objects (Garcia et al., 

2009) and other collision warning systems. LiDAR has been an interest of AV operations 

because it is generally held that an instantaneous, localized 3D map of the environment 

around an AV is necessary for its satisfactory operation (Thakur, 2016).  

 

2.4.4.1 3D LiDAR  

3D LiDAR sensors emit rapid pulses of narrow light beams in an ordered raster pattern; 

when the beams reflect off objects in the surrounding environment, distances can be 

calculated and stored in a point cloud. Precursors of modern LiDAR were called “laser 

scanners”; the lasers scan the environment much like a reader scans text. Precise micro 

electrical mechanical systems (MEMS) use mirrors to control the scanning motions to 

enable higher-frequency scans and higher-resolution imaging (Kim and Park, 2016). 

These systems are mechanically complex and expose the sensors to operational 

vulnerabilities through both mechanical and software errors. These sensors also tend to 

be expensive and energy intensive. Most 3D LiDAR systems for transportation 

applications use wavelengths of 1,550 nanometers – because it is possible for the laser 

to land on an eyeball – and 1,550 nm lasers are considered “eye-safe.”  
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2.4.4.2 2D LiDAR  

2D LiDAR emits a wide, diffuse laser that is comparable to the flashing of a camera – 

hence, they are often called “flashing LiDAR.” Because the light beam is diffused a 905 

nm wavelength is safe to human eyes, but also a short enough wavelength to support 

high-resolution sensing (Turley, 2018). Because the flashing blankets the area detection 

field, the complex mechanical needs laser scanning is eliminated. This is a particularly 

promising differentiator for  traffic-sensing applications, as the minimization of mechanical 

reliance allows the overall sensor size to be smaller and the manufacturing processes to 

be less expensive (Turley, 2018). Because a diffuse laser will receive an attenuated 

degree of reflected light, flashing LiDAR is not suitable for long-range detection. However, 

its range is suitable for detecting pedestrians from a fixed position on a traffic signal. Even 

though the ranging capabilities are stronger for 3D LiDAR, 2D LiDAR can support 

distance measurements by measuring the qualities of the returned light.  

2.4.5 Optical cameras 

Digital optical cameras have had a high degree of development due to their ability to 

reproduce images like that of human eyesight. Optical cameras are passive; ambient light 

in the electromagnetic spectrum enters the lens, passes through filters, and hits several 

small units of semiconductor material called photosensors. Light hitting the photosensors 

makes small changes in its electrical current, which are captured as image data. 

Most optical cameras are RBG cameras and the filters between the lens and photosensor 

separate the light into red, green, and blue layers for image processing. However, other 

kinds of optical cameras exist, which use different kinds of filters to capture different image 

data. Many kinds of optical cameras are being evaluated for use in image recognition and 

machine learning (Kilambi et al., 2008; Li et al., 2012). 

 

Optical cameras have the potential to produce the highest-resolution 2D images, but their 

detection is severely limited by unfavorable lighting conditions such as darkness or high-

intensity glare (Larson, 2020). Shadows can also degrade performance. Moreover, optical 

cameras may produce extra concerns over privacy and personally identifiable information 

and thus their data must be managed according to high privacy protections. For these 
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challenges, LiDAR may offer the best sensing for pedestrians given its balance between 

the tradeoffs in resolution, the limits of suitable wavelengths, and reliability in wide-

ranging lighting conditions. 

2.5 SUMMARY  

The literature review lays an appropriate context to explain why a shift from fixed 

assumptions in signal timing to dynamic signal operations can enhance the way 

pedestrians are accommodated at intersections. Dynamic signal capabilities would not 

only enhance accommodations (i.e., WALK phase extensions) for those with slower 

mobility, but also allow for the higher walk speed assumptions to be used as defaults such 

that vehicle delay is minimized. The success of dynamic signal operations depends 

heavily on the capability of the sensors. There have been many sensor developments 

that utilized electromagnetic waves as their sensing medium, and the type of wavelength 

used affects the maximum sensing resolution. LiDAR has a short enough wavelength to 

support high-resolution sensing and, as an active sensor, it is not as limited by favorable 

ambient light environments as optical cameras are. 2D flashing LiDAR has less 

sophisticated mechanical requirements than 3D LiDAR, which can eliminate potential for 

error as well as permit for smaller sensors. 
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3.0 DEVELOPING A TRACKING-BASED DYNAMIC 

FLASHING YELLOW ARROW (D-FYA) STRATEGY FOR 

PERMISSIVE LEFT-TURN VEHICLES TO IMPROVE 

PEDESTRIAN SAFETY AT INTERSECTIONS 

The surface transportation system is experiencing rapid changes today. Not only is travel 

demand increasing, but the travel modes are also diversified. People have more choices 

for travel other than traditional vehicles, from self-driving cars to e-scooters. There are 

many initiatives toward smart infrastructure and intelligent vehicles at federal, state, and 

municipal levels to accommodate these new trends. While these efforts are modernizing 

the transportation system, issues of “equitable safety” are surfacing. According to the 

National Highway Traffic Safety Administration (NSHTA) report, pedestrian fatalities have 

increased by 44% from 2010 to 2019. In 2019, 6,590 pedestrians died of traffic crashes, 

the highest in 30 years (NHTSA, 2020). Unfortunately, these figures suggest that walking 

or biking on the street is less safe today. While most of our efforts are devoted to 

improving mobility and safety for vehicles, the safety for pedestrians on roads is left far 

behind. Choosing walking or cycling over vehicles is not just a matter of choice but a 

matter of complex social-economic standings. Many underserved and low-income 

residents have to walk or bike to get to and from their destinations. Technologies should 

not only serve those who can afford them but also those who need them. Smart 

transportation is smart only if it provides equitable safety for all road users. In particular, 

the vulnerable pedestrians should be paid the most attention to. There are many aspects 

for pedestrian safety improvement from the perspective of technologies. We think the 

efforts can be categorized into four levels, as shown in Fig. 3.1. 
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Figure 3.1 Four levels of pedestrian safety improvement. 

Level 1: Observe pedestrian behaviors: Pedestrian data are mostly composed of counts 

today, which are also very limited. While the pedestrian counts reflect the need for 

pedestrian facilities, they do not necessarily provide observations to determine pedestrian 

safety. As such, it is necessary to collect pedestrian behavioral data for better-informed 

decision making toward pedestrian safety improvement.  

Level 2: Revisit the design guideline for pedestrian facility design. With more pedestrian 

behavioral data, it becomes possible to inspect the effectiveness of existing pedestrian 

facilities and validate the current design guidelines. Level 2 measures are primarily aimed 

at planning.  

Level 3: Novel control measures to improve pedestrian safety: this level involves real-time 

pedestrian behavioral data collection and real-time pedestrian protection, such as 

reducing pedestrian conflicts with vehicles. Level 3 measures are primarily aimed at 

operations. The proposed D-FYA system belongs to this level.  

Level 4: Integrate with other physical systems. At this level, multiple physical systems will 

be integrated to further protect pedestrians. For instance, the D-FYA system can be 

coupled with a lighting system to provide supplemental lights for crossing pedestrians at 

night. Level-4 solutions are rare today, but those novel solutions may be highly effective 

at protecting pedestrians.  
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Here, we propose a dynamic flashing yellow arrow (D-FYA) mechanism based on a state-

of-the-art LiDAR tracking system to fully protect concurrent crossing pedestrians. This 

system fits into the Level-3 pedestrian protection activities  defined above. The major 

benefit of this new D-FYA method is to completely separate the concurrent crossing 

pedestrians from permissive left-turn vehicles while using all safe permissive left-turn 

capacities. This feature is especially beneficial when a phase duration is much longer 

than the required pedestrian crossing time. 

3.1 DYNAMIC FLASHING YELLOW ARROW STRATEGY BASED ON LIDAR-

BASED PEDESTRIAN TRACKING TECHNOLOGY  

Flashing yellow arrow (FYA) has been widely adopted for permissive left-turn movements 

after the related research concluded that the FYA would improve traffic safety (Noyce et 

al., 2014). However, the current FYA mechanism does not separate permissive left-turn 

vehicles from concurrent crossing pedestrians. As a result, pedestrian crashes reportedly 

increased at certain locations after the implementation of FYA. To address this issue, 

agencies either turn the FYA off or adopt a special feature in some brands of traffic signal 

controllers, referred to as “minus pedestrian.” The concept is temporarily suppressing the 

FYA for a cycle if the corresponding pedestrian phase is called. Fig. 3.2 shows the 

concepts of FYA and the “minus pedestrian.” 

 

Figure 3.2 Demonstrations of FYA and “minus pedestrian.” 

Although the “minus pedestrian” feature separates left-turn vehicles from concurrent 

crossing pedestrians, it also eliminates all the permissive left-turn capability for that cycle. 

This mechanism often creates excessive left-turn queues during peak hours when both 

pedestrian volumes and left-turn vehicle volumes are high. We design a new dynamic 

(a): No 
ped call

(b): with 
ped call
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FYA or D-FYA based on a LiDAR-based pedestrian tracking system to address this issue. 

As shown in Figure 3.3, concurrent crossing pedestrians have a conflict with left-turn 

vehicles only when they are within the so-called “hazard zone.” 

 

“Three-zone” pedestrian tracking with LiDAR sensors: In reality, there may be situations 

where pedestrians may push the pedestrian button and then choose to cross or “jaywalk” 

before the WALK sign starts. As a result, neither a pedestrian phase nor FYA suppression 

is needed for that cycle. The main objective of the D-FYA is to protect pedestrians who 

comply with the traffic signal indications. To address these issues, we design a “three-

zone” method to filter and only track those legitimate crossing pedestrians. As shown in 

Fig. 3.3., a pedestrian needs to enter the wait zone first and push the pedestrian button 

to be considered legitimate. The waiting zones (Zone 1) of each pedestrian phase are 

defined as “far-end” (Zone 1) and “near-end,” according to their relative locations to the 

left-turn vehicles. During WALK, if a pedestrian is in Zone 1 and/or 1' enters the boundary 

zones (Zones 2 and 3), then this pedestrian is considered a legitimate pedestrian. If the 

same pedestrian reaches the other end, then this pedestrian crossing is considered 

finished. If the pedestrian button is pushed but no legitimate pedestrians enter the 

intersection, the pedestrian request is then considered void and ignored. The three-zone 

method will filter out those “jaywalking” pedestrians. 

 

Figure 3.3 Three-zone pedestrian detection method at intersections: a: demonstration, 

b: zone settings in the field in reference to WB left-turn vehicles (City of Irving, TX). 

1 3
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Dynamic Flashing Yellow Arrow (D-FYA) based on pedestrian tracking: The D-FYA 

algorithm is elaborated as follows: 

When a traffic signal green phase starts: Reset all the FYAs as programmed initially. 

When this signal phase enters yellow and all-red: The proposed D-FYA algorithm will 

check the following items in sequence: 

STEP 1: Check if this phase has a concurrent pedestrian phase. If yes, go to Step 2. If 

no, STOP. 

STEP 2: Check if the pedestrian button is pushed. If yes, go to Step 3. If no, STOP. 

STEP 3: Examine the presence of pedestrians in far-end and near-end waiting zones. 

There are two scenarios: 

(i) No pedestrians are detected at either waiting zones, the D-FYA algorithm will keep the 

original FYA settings. Then go to STEP 4. 

(ii) Pedestrians are detected at one or two waiting zones, then the D-FYA algorithm will 

suspend the programmed FYA temporarily. Then go to STEP 4.  

When green or WALK starts, the D-FYA algorithm will check STEP 4 through 6 to make 

the final decision on FYA for this cycle. 

STEP 4: At this step, there are four possibilities for pedestrians to enter the intersection 

from two sides of the waiting zones.   

(i) During the WALK time, if pedestrians in the far-end waiting zone (e.g., Zone 1 in 

Fig.3.3) enter the intersection (e.g., Zone 2 in Fig. 3.3) but no pedestrians in the near-end 

waiting zone (e.g., Zone 1' in Fig. 3.3) enter (e.g., Zone 3 in Fig. 3.3). The FYA is 

suspended until all pedestrians have left the “hazard zone” (See Fig. 3.3). Then the FYA 

is reactivated until the current phase ends.  

(ii) During the WALK time, if pedestrians in the near-end waiting zone enter the 

intersection while no pedestrians in the far-end waiting zone enter, then the FYA is 

suspended until all near-end pedestrians reach the other side of the intersection (e.g., 

enter the boundary zone on the other side). Then the FYA is reactivated until the current 

phase ends. 

(iii) During the WALK time, if pedestrians enter the intersection from both sides, the FYA 

is suspended until all pedestrians reach the other side.  
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(iv) During the WALK time, if no pedestrians enter from either side, the FYA is activated 

until the current phase ends.  

Step 4 is the final step of this algorithm for each phase. 

Discussion: 

1. Note that the decisions on FYA at Step 3 are temporary because a detected person 

in the waiting zones does not mean they intend to cross, or a pedestrian may 

mistakenly push a pedestrian button. The final decision of keeping or suspending 

an FYA will be determined after the green/WALK display indication starts.  

2. Note that activating FYA or not is made once and only once with each cycle to 

avoid confusing drivers and pedestrians.  

3. If a pedestrian “jaywalks” and gets out of the boundary zone when reaching the 

intersection's other side, LiDAR sensors will lose tracking it. The missing 

pedestrian will be allocated with a longest  walk time beyond which this person is 

considered to have crossed. 

4. The proposed D-FYA is particularly effective when the opposing green is much 

longer than the needed pedestrian crossing time. Once all pedestrians are cleared, 

the FYA is reactivated and can provide a significant permissive capacity for left-

turn vehicles. By contrast, the current “minus pedestrian” mechanism will 

unconditionally suppress the FYA all through the cycle even if no pedestrians cross 

after the push button is pressed or all pedestrians have crossed the intersection 

during a short period.  

3.2 ANALYSIS OF PERMISSIVE LEFT-TURN CAPACITY UNDER D-FYA  

In this section, we analyze the changes to the permissive left capacity with the D-FYA as 

opposed to that with the PPLT under different scenarios. A traffic scenario in this context 

is composed of the duration of D-FYA, opposing through traffic volumes and the number 

of lanes, and the corresponding pedestrian volume. After the protected left-turn phase is 

over, the FYA will start together with the green for the opposing through traffic. The left-

turn vehicles will begin to seek acceptable gaps to maneuver. While the queue of 

opposing traffic is being discharged,  the left-turn vehicles cannot find the gaps due to the 

small headways. After the queuing vehicles are cleared, the left-turn vehicles will be able 
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to find acceptable gaps to cross. If the permissive left-turn strategy is D-FYA, then the 

flashing yellow arrow may start on time, be delayed, or even canceled, depending on the 

presence of pedestrians. It can be formulated as follows. Table 3.1 shows the notation 

for the formulation. 

Table 3.1: Notation for analysis of permissive left-turn capacity under D-FYA 

Notations for Analysis of permissive left-turn capacity under D-FYA 

𝐶   Cycle length (sec) 

𝐺  Green duration of opposing through traffic  

𝑠 Saturation rate (vehicle per hour per lane)  

𝑞 Volume of opposing through traffic (veh per hour per lane)  

𝑝 Volume of concurrent crossing pedestrians (ped per hour) 

𝑇  Time window for permissive left turn (sec) 

𝑇′ Time window for permissive left turn under D-FYA (sec) 

 𝑡𝑐 Queue clearing time (sec) 

ℎ Headway (sec) 

ℎ𝑎 Acceptable gap for left turning (sec) 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇  Capacity during the permissive protected left turn (veh per hour per 

lane) 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  Capacity during FYA (veh per hour per lane) 

 

As shown in Fig. 3.4, 𝑡𝑐 is the time for clearing the queue of opposing through traffic and 

it can be calculated as:  

Total arrivals during red and queue clearing time: 𝑞 × (𝐶 − 𝐺 + 𝑡𝑐) 

Total departures during the queue clearing time: 𝑠 × 𝑡𝑐 

Then total arrivals are equal to total departures when the queue is cleared.  

𝑞 × (𝐶 − 𝐺 + 𝑡𝑐) = 𝑠 × 𝑡𝑐        (1) 

Therefore,    

𝑡𝑐 =
(𝐶−𝐺)

(
𝑠

𝑞
−1)

          (2) 

During 𝑡𝑐, left-turn vehicles cannot find acceptable gaps. The permissive time window for 

the left-turn vehicles with a cycle is:  
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𝑇 = 𝐺 − 𝑡𝑐 = 𝐺 −
(𝐶−𝐺)

(
𝑠

𝑞
−1)

=
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
       (3) 

 

Figure 3.4 Queue clearing time calculation with the cumulative counting curves. 

 

Assuming that new opposing through vehicles arrive randomly, then the headway 

between arrivals can be approximated by an exponential distribution. The CDF function 

of the headway ℎ is 

𝐹(ℎ,𝑞) = {1 − 𝑒−𝑞ℎ ℎ ≥ 0
0  ℎ < 0

 (Multiple lanes)     (4) 

𝐹(ℎ,𝑞) = {
1 − 𝑒−𝑞ℎ ℎ ≥ ℎ𝑠𝑎𝑓𝑒

0  ℎ < ℎ𝑠𝑎𝑓𝑒
 (Single lane)     (4-a) 

From (4) and (4-a), after the queue is cleared, the mean headway in seconds will be 

(
3600

𝑞
) seconds and the expected number of gaps of opposing through traffic during the 

permissive left-turn time window will be  
𝑇

(
3600

𝑞
)
. We can also estimate that the probability 

that headway is equal to or greater than the acceptable gap is: 

   𝐹ℎ{ℎ > ℎ𝑎} = 1 − (1 − 𝑒−𝑞ℎ𝑎) = 𝑒−𝑞ℎ𝑎     (5) 

So, the maximal left-turn capacity during the permissive time window will be  

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇 =
𝑇

(
3600

𝑞
)

× 𝑒−𝑞ℎ𝑎 =
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
× 𝑞 × 𝑒−𝑞ℎ𝑎      (6) 

The average pedestrian arrivals per cycle 𝑛𝑝 can be calculated as 

   𝑛𝑝 =
𝑝

(
3600

𝐶
)
          (7) 
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When pedestrians are only on the near side or on both sides (See Fig. 3.4), then they will 

use all the walk and pedestrian clearance time to cross the intersection. During that 

period, the D-FYA will indicate a red arrow for left-turn vehicles. After the pedestrian 

clearance timer expires, FYA will be displayed. As such, the remaining permissive time 

window 𝑇′will be 

𝑇′ = 𝑇 − 𝑡𝑊𝐴𝐿𝐾 − 𝑡𝑃𝐶 =
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
− 𝑡𝑊𝐴𝐿𝐾 − 𝑡𝑃𝐶     (8) 

And the permissive left-turn capacity is  

𝑇′

(
1

𝑞
)

× (1 − 𝑒−𝑞ℎ𝑎) = (
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
− 𝑡𝑊𝐴𝐿𝐾 − 𝑡𝑃𝐶) × 𝑞 × 𝑒−𝑞ℎ𝑎    (9) 

When pedestrians are only on the far side,  they will take about 50% of pedestrian 

clearance time to cross the “hazard zone.” Then the D-FYA will start the flashing yellow 

arrow for left-turn vehicles and so the permissive left-turn capacity in this case is  

(
(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
− −𝑡𝑊𝐴𝐿𝐾 −

𝑡𝑃𝐶

2
) × 𝑞 × 𝑒−𝑞ℎ𝑎       (10) 

If 𝑛𝑝 ≤ 1, then the presence probability of one crossing pedestrian with each cycle will be 

𝑛𝑝 and the pedestrian can appear either on the near side or far side with equal (50%) 

probabilities (See Fig. 3.4). The expected permissive left-turn capacity under D-FYA can 

be estimated as 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
(((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−𝑡𝑃𝐶)×𝑞×𝑒−𝑞ℎ𝑎)+((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−

𝑡𝑃𝐶
2

)×𝑞×𝑒−𝑞ℎ𝑎))

2
 (11) 

If 𝑛𝑝 > 1, then we can assume there is more than one pedestrian every cycle and they 

can all be  on the near side,  on the far side, or both sides with equal (33%) probability.  

The expected permissive left-turn capacity of the D-FYA can be estimated as 

𝑐𝑎𝑝𝑝𝑒𝑟𝑚𝐿𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
(2×((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−𝑡𝑃𝐶)×𝑞×𝑒−𝑞ℎ𝑎)+((

(𝑠𝐺−𝑞𝐶)

(𝑠−𝑞)
−−𝑡𝑊𝐴𝐿𝐾−

𝑡𝑃𝐶
2

)×𝑞×𝑒−𝑞ℎ𝑎))

3
 (12) 

 

Table 3.2 Traffic settings for the permissive left-turn capacity calculation 

 Permissive LT  D-FYA (np<1) D-FYA (np>=1) 

Cycle length 110 110 110 110 110 110 110 110 110 

opposing through green (s) 34 40 46 42 48 54 42 48 54 
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saturation rate (vphpl) 
150

0 

150

0 

150

0 

150

0 

150

0 

150

0 

150

0 

150

0 

150

0 

the volume of opposing through 

traffic (veh per hour p) 
400 500 600 400 500 600 400 500 600 

Crossing ped volumes (ped per 

hour) 
100 200 300 100 200 300 100 200 300 

Through queue clearing time 3 3 3 3 3 3 3 3 3 

time window for permissive LT 14 30 12 14 30 12 14 30 12 

Acceptable gaps for permissive LT 8 8 8 8 8 8 8 8 8 

pedestrian clearance time (sec) 5 5 5 5 5 5 5 5 5 

pedestrians walk time (sec) 10 10 10 10 10 10 10 10 10 

 

Table 3.3 shows the sensitivity results of capacity under different conditions.  

Table 3.3: The sensitivity results of capacity under different conditions 

Single Lane 

Oppose Th 

Volume (v/h/l) 
Perm LT Cap in PPLT D-FYA (np<1) D-FYA (np>=1) 

400 1632 903 797 

500 1434 717 598 

600 1027 642 513 

Multiple Lane 

Oppose Th 

Volume (v/h/l) 
Cap of Perm LLT D-FYA (np<1) D-FYA (np>=1) 

400 1046 579 511 

500 823 535 466 

600 527 329 264 

 

Fig. 3.5 shows the permissive left-turn capacity under different capacities.  
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Figure 3.5 The sensitivity of capacity under different conditions: (a) single lane (b) 

multiple lanes. 

Discussion:  

1. From Eq. (6), if the opposing through traffic volume q is high, the permissive left-

turn capacity will be close to zero. In that case, the traffic signal timing should only 

use a protected left-turn strategy to discharge the left-turn vehicles.  

2. From Eq. (11) and Eq. (12), if the mainline green is much longer than the walk and 

pedestrian clearance time or even almost equal to the cycle length, then the D-

FYA will reserve significant permissive left-turn capacities while separating the 

pedestrians from left-turn vehicles. By contrast, the PPLT with minus pedestrian 

phase will not reserve any permissive left-turn capability when pedestrians arrive 

with every cycle.  

3. The above analysis is limited to isolated intersections because it assumes random 

arrivals of opposing through traffic after the queue is cleared. If an intersection is 

on coordination, then exponentially distributed headway for new arriving vehicles 

may be no longer valid because upstream vehicles will arrive in platoons. The 

analysis of acceptable gaps for coordinated intersections must be empirically 

performed.   

3.3 CASE STUDY I: EVALUATION OF D-FYA’S PERFORMANCE USING THE 

“EMULATION-IN-THE-FIELD” TRAFFIC SIGNAL SIMULATION FRAMEWORK  

In this experiment, we evaluated the performance of the proposed D-FYA algorithm in the 

field by verifying its real-time decisions according to the observed pedestrian behaviors 
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in the field. The experiment design is referred to as the “emulation-in-the-field” framework. 

It means all the traffic signal inputs and pedestrian behaviors are instantaneously 

collected in the real world to drive the D-FYA decision makings, whereas the D-FYA 

decisions are not implemented but reported to the observers for verification. The purpose 

of this experiment is to evaluate the algorithm’s reliability and accuracy in the field. The 

selected intersection is Cooper Street at the UTA Boulevard, a major intersection 

connecting two urban campuses of the University of Texas at Arlington. The daily 

pedestrians crossing Cooper Street (mainline) range from 1,000 to 1,500 in a school day. 

The phasing sequence and pedestrian tracking zones are shown in Fig. 3.6. There are 

four flashing yellow arrows on all four approaches. 

Whenever a phase starts, the D-FYA algorithm will run and report its findings (e.g., the 

presence of waiting pedestrians) and decisions (e.g., suppressing or activating an FYA) 

on the console screen. At the same time, a researcher verified the reported decisions 

according to their observations in the field based on the expected decisions according to 

the algorithm. The observation was carried out over 100 signal cycles with pedestrian 

crossings. Table 3.4 demonstrates how the D-FYA decisions were recorded and verified, 

using five cycles as an example. 

 

Figure 3.6 Phasing sequence (Fig. 3.6-a) and pedestrian sensing zone layout (Fig.3.6-

b) at  Cooper Street and UTA Boulevard, Arlington, TX. 

Table 3.4 Records of emulation-in-the-field to verify the D-FYA strategy 
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Signal 
Cycle 

Corresponding 
signal phases 

near-
end 
ped 
prese
nce 

far-end 
ped 
presenc
e 

Both 
ends 
ped 
presenc
e 

No ped 
presenc
e 

FYA 
started as 
schedule
d 

FYA 
delaye
d 

FYA 
cancelle
d 

Comment 

1 8 1 0 0 0 0 0 1 1* 

2 4 1 0 0 0 0 1 0 1* 

3 4 0 0 0 1 1 0 0 2* 

4 4 1 0 0 0 0 1 0 1* 

5 4 0 1 0 0 0 1 0 1* 

Note: 1*: verified by the researcher in the field; 2* verified that the push button was 

pressed but the pedestrian chose not to wait (either jaywalked or walked away)  

The case study was conducted for 100 cycles in the field. There were 70 cycles where at 

least one pedestrian phase was called. Among those 70 cycles, 25 cycles only had near-

end pedestrians, 25 cases with far-end pedestrians, nine cases with pedestrians on both 

sides, and 11 cases with pedestrians walking away before WALK. Comparing what the 

D-FYA was reported on the screen and what we observed in the field, we concluded that 

the D-FYA algorithm could make correct decisions in 93 cycles out of 100 cycles. Table 

4 summarizes the D-FYA’s performance under various scenarios.  

Table 3.5: Performance summary of D-FYA algorithm under different scenarios 

Cycles with 

no ped 

calls 

Cycles only 

with near-

end peds  

Cycles only 

with far-end 

peds 

Cycles with 

both-end 

peds 

Cycles with ped 

calls but no ped 

presence 

The accuracy 

rate of the D-

FYA algorithm 

30 25 25 9 11 93% 

 

After finishing the experiment in the field, we further analyzed the recorded video and 

identified the possible reasons for incorrect D-FYA decisions. In those failed cases, the 

pedestrians either leaned on the traffic light poles or multiple pedestrians stood too close 

for the LiDAR tracking algorithm to separate them effectively. This accuracy rate should 

further increase with improvements to the LiDAR tracking. 

3.4 CASE STUDY II: MOBILITY EVALUATION OF THE D-FYA STRATEGY USING 

THE “CABINET-IN-THE-LOOP” TRAFFIC SIGNAL SIMULATION PLATFORM  

In the second case study, we evaluate the mobility performance of the D-FYA as opposed 

to the other two common permissive left-turn strategies: (I) protected + permissive left 

turn (PPLT); and (II) protected + permissive + minus-ped-phase. The first strategy is to 
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show the left-turn vehicles with a green arrow followed by a flashing yellow arrow, 

whereas the second strategy is to show the left-turn vehicles with a green arrow first and 

then examine if a pedestrian call is placed. If so, then a red arrow is displayed until the 

end of opposing green. Otherwise, the flashing yellow arrow is activated.  

 

The intersection of  West Walnut Hill Lane at  North Belt Line Road in  Irving, TX, was 

selected to develop a simulation model. Fig. 3.7 shows the movements and phasing 

sequence. 

 

Figure 3.7 Layout of intersection for the second case study. 

 

Cabinet-in-the-loop traffic signal simulation platform: The “minus-ped-phase” feature was 

not available in traffic signal controllers until very recently. So, it is not yet supported by 

any traffic signal simulation engine. To keep a high-fidelity and fair comparison, we 

developed a cabinet-in-the-loop traffic signal simulation platform for this experiment. As 

shown in Fig. 3.8, two control units (CU) are coupled with the VISSIM simulation engine. 

The first CU is a fully scaled traffic signal assembly. Through the input and out serial ports 

of the assembly, we retrieved the latest traffic signal status in the traffic signal controller, 

and we then sent it into VISSIM simulation via the provided traffic signal control API. On 

the other hand, the real-time detector status in the simulation is collected via the signal 

control API and then sent into traffic signal assembly via its input serial port. The hardware 

traffic signal controller will decide according to the detector inputs, including the FYA and 

minus pedestrian phase for the FYA.  
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A challenge in this experiment is that pedestrian tracking is not straightforward in 

simulation. To address this issue, we developed a second virtual controller in simulation 

for the D-FYA strategy. Its logic is to issue a red arrow if there are crossing pedestrians 

(i.e., the blue detectors are occupied by pedestrians); otherwise, it will issue a green 

arrow. The virtual controller issues red light only when the pedestrian phase is activated, 

so when pedestrians (if any) enter the intersection. The simplified D-FYA algorithm will 

not lose its generality since pedestrians have no random exceptions in a simulation like 

jaywalking.  

 

As shown in Fig. 3.8, the blue detectors are configured to detect concurrent crossing 

pedestrians. Two signal heads, controlled by the hardware controller and by the virtual D-

FYA controller, respectively, are placed in sequence for the left-turn vehicles. The 

permissive left-turn vehicles can seek gaps and enter only if neither traffic signal head is 

red. As an illustration, when the opposing (SB in Fig. 3.8) traffic light turns green with the 

concurrent pedestrian phase, the hardware traffic signal controller will turn the first signal 

head to a flashing yellow arrow. In the meanwhile, if the virtual controller detects the 

presence of crossing pedestrians, it will turn red, preventing vehicles from entering the 

intersection. If the virtual controller does not detect the pedestrian presence, it will indicate 

a green arrow. A flashing yellow arrow and a green arrow will allow left-turn vehicles to 

enter the intersection during the permissive left-turn phase. This configuration can, in 

essence, start, delay, or cancel a programmed FYA within a cycle. 
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Figure 3.8 The architecture of cabinet-in-the-loop traffic signal simulation for the D-FYA 

evaluation. 

Without loss of generality, the mainline vehicle and concurrent crossing pedestrian 

volumes are set as low, medium, and high to evaluate the performance of three 

permissive left-turn strategies (see Table 5).  The experiment also excluded the possibility 

of “starvation” by extending the green on the mainline left-turn lanes to ensure the 

mainline traffic was not affected by different permissive left-turn strategies.  

Table 3.6 Vehicle and pedestrian volumes for different scenarios 

 

Volume Southbound Northbound Westbound Eastbound 

 

Pedestria

n 

L T R L T R L T R L T R  

Low 75 200 30 75 200 30 300 500 120 300 500 130 100 

Medium 75 200 30 75 200 30 500 500 120 500 500 130 200 

High 75 200 30 75 200 30 750 500 120 750 500 130 350 

 

Nine simulation scenarios are generated with the combination of available vehicle and 

pedestrian volumes. They are referred to as:  

1. LVLP: low vehicle volumes and low pedestrian volumes.  

2. LVMP: low vehicle volumes and medium pedestrian volumes.  

3. LVHP: low vehicle volumes and high pedestrian volumes.  
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4. MVLP: medium vehicle volumes and low pedestrian volumes.  

5. MVMP: medium vehicle volumes and medium pedestrian volumes.  

6. MVHP: medium vehicle volumes and high pedestrian volumes.  

7. HVLP: high vehicle volumes and low pedestrian volumes.  

8. HVMP: high vehicle volumes and medium pedestrian volumes. 

9. HVHP: high vehicle volumes and high pedestrian volumes. 

 

Fig.3.9 shows the mainline left-turn queue length (in feet) comparison among three 

permissive left-turn strategies. It reveals that the mobility performance of D-FYA is 

between the PPLT and “PPLT with Minus-pedestrian-phase” in most cases. In some 

cases, the D-FYA is much better than the “PPLT+Minus-Ped-phase” (e.g., the MVHP 

scenarios) in mobility while separating the left-turn vehicles and pedestrians. When the 

opposing through traffic and pedestrian volumes are both high, all three permissive left-

turn strategies will degrade to the protected-only left-turn strategies (e.g., the HVHP 

scenario) because the left-turn vehicles cannot find the acceptable gaps.  A similar pattern 

also shows in the delay analysis (Fig. 3.10).   

Discussion II 

From the simulation results, it can be concluded that for both low vehicle and medium 

traffic conditions, PPLT and D-FYA has better performance over PPLT+Minus-Ped-

Phase strategy whereas the D-FYA and PPLT with Minus-Pedestrian-Phase have the 

same pedestrian protection. However, when both vehicle and pedestrian volumes 

increase to a high level, all three permissive left-turn strategies show similar delays and 

queue lengths to the protected-only left-turn strategy. This is because the left-turn 

vehicles cannot find the acceptable gaps during FYA. It implies that we may need to 

prohibit any permissive left-turn strategies under certain scenarios.  
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Figure 3.9 The mainline left-turn queue length comparison under various scenarios. 
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Figure 3.10 The mainline left-turn delay comparison under various scenarios. 

 

3.5 CONCLUSION AND FUTURE WORK  

In this study, we develop a novel dynamic flashing yellow arrow (D-FYA) mechanism to 

leverage the permissive left-turn capacity and crossing pedestrians’ safety based on 

pedestrian tracking technologies. The research outcome is to address the reported 

potential safety hazards after the flashing yellow arrow (FYA) permissive left-turn strategy 

is widely deployed. Through a novel “emulation-in-the-field” traffic signal control 
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framework, we verified the resilience of the proposed D-FYA algorithm to random 

pedestrian behaviors and mitigations to inaccurate pedestrian detections. In addition, in 

a controlled simulation environment, we further evaluated all three permissive left-turn 

strategies: protected-permissive left turn (PPLT), D-FYA, and PPLT with minus-

pedestrian-phase. We concluded that the proposed D-FYA-based pedestrian tracking 

would be more efficient than the PPLT with a minus-pedestrian phase. At the same time, 

it can effectively solve the issue of pedestrian safety. It was also found that when the 

opposing through traffic became high, all three permissive left-turn strategies degraded 

to the protected-only control strategy, leading to high delays and long queues.  

 

In the future, we plan to introduce more features into the D-FYA strategy, considering the 

concurrent crossing of pedestrians and the opposing through traffic. As revealed in the 

experiment, it would be better to dynamically cancel and recover the FYA according to 

the volume of opposing through traffic. It may reduce the possibility of collisions between 

left-turn vehicles and opposing through vehicles.  
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4.0 PEDESTRIAN BEHAVIOR STUDY 
The literature review lays an appropriate context to explain why a shift from fixed 

assumptions in signal timing to dynamic signal operations can enhance the way 

pedestrians are accommodated at intersections. To achieve this objective, a LiDAR 

device was selected and tested in the field. This chapter provides descriptions of the 

LiDAR device, site selection, analysis of the data and results. 

4.1 SELECTION OF LIDAR DEVICE 

The selected LiDAR sensors are directional, and each sensor has a 60-degree field of 

view. At each intersection for the pilot study, four LiDAR sensors were installed and 

aligned in such a way that one object (vehicle or pedestrian) can be tracked and carried 

over from one sensor to the other while keeping the same ID. We adopted a perception 

software provided by the LiDAR manufacturer. From the preliminary study, it was 

recognized that the provided perception software might capture false objects under 

certain conditions (heavy rains, snows, etc.). To mitigate this issue, the project team 

developed an additional context-aware screening algorithm. For instance, if an “object” 

was reported to appear in the middle of an intersection for a long time, this object will be 

ignored because this is unrealistic. With the provided tools, the project team also drew 

zones within the sensing area and developed a computer program to retrieve zone status 

and synchronize with signal controller status for the proposed research. Fig. 4.1 

demonstrates the system architecture.  
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Figure 4.1 System architecture of the pedestrian information system. 

4.2 ALGORITHM DEVELOPMENT 

There are three levels of algorithms that are commonly used with the LiDAR sensors. 

Hardware algorithms are typically used to make the LiDAR sensors more efficient and 

reliable to generate raw point clouds. These are typically developed by the LiDAR sensor 

manufacturers. Perception and classification algorithms are used to cluster the point 

clouds into objects and to identify characteristics of the object (type, behaviors, etc.). 

These are developed by the equipment manufacturers or  third-party vendors. Integration 

algorithms are developed for specific applications. In this study, an integration algorithm 

was developed to integrate the LiDAR tracking algorithm with real-time traffic signal status 

at intersections. The custom software that was developed to record pedestrian data from 

the LiDAR device recorded the following elements. 

 

• Pedestrian phase – This is the signal phase associated with the pedestrian 

movement (e.g., P2, P4, P6, P8). 

• Pedestrian arrival time – This is the time when the pedestrian arrives at the curb. 

• Pedestrian entering time – This is the time when the pedestrian enters a zone that 

is used for delay time estimation. 

• Pedestrian leaving time - This is the time when the pedestrian leaves the zone. 

• Crossing time – This is the time that the pedestrian spends crossing.  
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• Perception reaction time – This is the time taken by the pedestrian to perceive the 

signal indication and react to it. 

• Effective perception reaction time – This is the P-R time plus the walking time from 

where a pedestrian stands to the boundary of the waiting area (i.e., entering the 

intersection). 

 

Using these elements, performance measures such as pedestrian delay were calculated. 

These are further described in the results section. 

4.3 SITE SELECTION 

The next step in the study was to select sites where a LiDAR device could be installed. 

The objective of data collection in the field was to test the device to assess its accuracy 

to detect and record pedestrian data at signalized intersections, and to determine whether 

this device can be successfully installed in the field to monitor pedestrian and vehicular 

movements and interact with the signal controller to dynamically impact signal operations. 

Two sites were selected for data collection. These sites were selected in consultation with 

the staff at the cities of Arlington and Irving, TX. The first site was at W. Walnut Hill Lane 

and N. Belt Line Road. This site is in Irving, TX, and is close to the Dallas Fort Worth 

International Airport. W. Walnut Hill Lane in the eastbound direction has two left-turn 

lanes, one thru lane and one shared thru/right-turn lane. In the westbound direction, there 

is one left-turn lane, two thru lanes and one shared thru/right-turn lane. There are four 

crosswalks at this intersection corresponding with phases 2, 4, 6 and 8, as shown in 

Figure 4.1. 

The second intersection that was selected was located at the intersection of UTA 

Boulevard and S. Cooper Street in Arlington, TX. This location is located  on the University 

of Texas at Arlington’s campus and is right next to the engineering building. As such, it 

was expected to have large pedestrian volumes when the university is in session. Figure 

4.1 shows the satellite view of the UTA Boulevard and S. Cooper Street intersection. UTA 

Boulevard in the east and westbound directions has one left-turn lane, one thru lane, one 

pocket bike lane and one right-turn lane. S. Cooper Street in the northbound direction has 
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one left-turn lane, two thru lanes and one right-turn lane, while in the southbound direction 

there is one left-turn lane, two thru lanes and one shared thru/right-turn lane. There are 

four crosswalks at this intersection corresponding with phases 2, 4, 6 and 8, as shown in 

Figure 4.1. 

 

Figure 4.2: W. Walnut Hill Lane and N. Belt Line Road. 
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Figure 4.3: UTA Boulevard and S. Cooper Street. 

4.4 DATA COLLECTION 

Four LiDAR devices were set up at each of the selected intersections on the mast arm. 

The data from these devices was transmitted to a LiDAR hub node from which it was 

retrieved and used for further analysis. Collection of data at W. Walnut Hill Lane and N. 

Beltline Road started on 12/12/20 and 10/31/21. There were a number of data gaps 

observed, possibly because the device was disconnected. A total of 4,289 observations 

were recorded at this intersection. However, for some records the arrival time, entering 

time and/or leaving time were not recorded in the data, perhaps due to the pedestrian 

stepping outside the zone that was drawn to record these metrics. In such cases, these 

incomplete records were discarded, which resulted in 3,524 pedestrian observations. 

These were used for further analysis. Data collection at the intersection of UTA Boulevard 

and S. Cooper Street on 7/7/21 and ended on 12/6/21. At this intersection, 50,250 

pedestrian observations were recorded at all four crosswalks. After removal of incomplete 

records, 50,167 pedestrian observations were retained for further analysis.  
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4.5 RESULT ANALYSIS 

Figures 4.4 and 4.5 show the number of observed pedestrians by month and phase at 

the two sites. The total number of pedestrians observed were three at 524 at W. Walnut 

Hill Lane and N. Beltline Road, and 50,167 pedestrians were observed at UTA Boulevard 

and S. Cooper Street across all crosswalks and phases. As stated previously, data gaps 

were observed at the W. Walnut Hill Lane and N. Beltline Road Intersection, as also seen 

in Figure 4.4, with the largest data gap observed between July and September. More 

pedestrians were observed on the crosswalk associated with phase 3, which is the east 

crosswalk on W. Walnut Hill Lane. At the UTA Boulevard and S. Cooper Street 

intersection, observed pedestrian volumes increased between July and October, with the 

highest observations recorded in October in the crosswalk associated with phase 4. This 

is the north crosswalk on S. Cooper Street.  

 

Figure 4.4: Number of pedestrians observed per phase and month at W. Walnut Hill 

Lane and N. Beltline Road. 
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Figure 4.5: Number of pedestrians observed per phase and month at UTA Boulevard 

and S. Cooper Street. 

Tables 4-1 and 4-2 show the various pedestrian performance metrics collected at the two 

intersections. At the W. Walnut Hill Lane and N. Beltline Road intersection, the average 

effective perception reaction time varied between 5.3 seconds for phase 6 to 6.7 seconds 

for phase 2. These observed values are significantly higher than those reported in the 

literature. Wood et al. recruited eight participants to jog and walk across the intersection 

and found that the perception reaction time between the auditory signal onset to the end 

of the forward motion varies between 0.9 seconds to 1.9 seconds, with a mean of 1.23 

seconds (Wood et al., 2010). Fogger et al. studied the perception reaction time depending 

on the level of anticipation, which was categorized into pedestrians who were looking 

directly at the WALK signal, pedestrians who were anticipating crossing either by 

watching the opposing traffic signal or the flow of traffic, and pedestrians who were 

distracted in some way (Fogger et al., 2000).  Younger pedestrians (< 55 years of age) 

tended to have shorter perception-reaction times than  older pedestrians (> 55 years of 

age).  The perception-reaction times for pedestrians looking straight ahead at the WALK 

signal was 0.84 + +0.51s, 0.77 + 0.75s for those anticipating a light change and 1.87 + 
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1.0 seconds for distracted pedestrians (Fogger et al., 2000). Average crossing times 

varied between 16.9 seconds to 20.4 seconds, while average pedestrian delay varied 

between 28.4 seconds and 43.6 seconds. 

 

The perception-reaction times at the intersection of UTA Boulevard and S. Cooper Street 

varied between 1.7 seconds to 2.8 seconds, with an average of 2.1 seconds, which is 

more in line with values seen in the literature. Audible pedestrian signals (APS) are 

present at this intersection, which also serve to alert pedestrians to any change in signal 

display, thus lowering their perception-reaction times. Crossing times varied between 

11.2 seconds and 16.5 seconds with an average of 15.5 seconds, while pedestrian delays 

varied between 32.2 seconds and 48.7 seconds with an average of 44.8 seconds.  

 

Table 4-1: Pedestrian performance metrics at W. Walnut Hill Lane and N. Beltline Road 

Phase Number of 
Pedestrian 
Observations 

Average of Perception- 
Reaction Time (s) 

Average of 
crossing time (s) 

Average of 
Pedestrian Delay 
(s) 

2 542 6.7 16.9 29.5 

3 1214 5.6 20.4 43.6 

4 1272 5.8 19.2 42.6 

6 496 5.3 16.9 28.4 

Total 3524 5.8 18.9 38.9 

 

Table 4-2: Pedestrian performance metrics at UTA Boulevard and S. Cooper Street 

Phase Number of 
Pedestrian 
Observations 

Average of Perception- 
Reaction Time (s) 

Average of 
crossing time (s) 

Average of 
Pedestrian Delay 
(s) 

2 5326 2.2 13.0 31.6 

4 29397 1.7 16.4 48.2 

6 5485 2.7 11.2 32.2 

8 9959 2.8 16.5 48.7 
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Total 50167 2.1 15.5 44.8 

 

4.6 SUMMARY 

In this project, the investigators explored the possibility of applying the LiDAR sensing 

technologies to pedestrian behavioral data collection and safety protection. Through a 

customized solution, the investigators synchronized the pedestrian behaviors with the 

traffic signal status. The pedestrian behavioral data showed that the ADA-compliant 

pedestrian push buttons can significantly reduce pedestrians’ perception-reaction time to 

a WALK signal.  

In addition, the investigators also explored a novel dynamic flashing yellow arrow 

mechanism based on pedestrian tracking. The D-FYA aims to separate permissive left-

turn vehicles from the concurrent crossing pedestrians. The simulation results were 

promising and the D-FYA will proceed to the field test in the future. The investigators also 

designed a three-color code to demonstrate the pedestrian behaviors.  

The findings will benefit the pedestrian safety improvement.    
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